Fall 2024
A yearlong survey, in sequence, of fundamental papers in the geosciences. Topics in 505 (Spring) include the origin and interior of the Earth, plate tectonics, geodynamics, the history of life on Earth, the composition of the Earth, its oceans and atmospheres, past climate. Topics in 506 (Fall) include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, rock fracture and seismicity. A core course for all beginning graduate students in the geosciences.
Course educates Geosciences and AOS students in the responsible conduct of research using case studies appropriate to these disciplines. This discussion-based course focuses on issues related to the use of scientific data, publication practices and responsible authorship, peer review, research misconduct, conflicts of interest, the role of mentors & mentees, issues encountered in collaborative research and the role of scientists in society. Successful completion is based on attendance, reading, and active participation in class discussions. Course satisfies University requirement for RCR training.
Previous Semesters
Undergraduate Courses
Humans have profoundly altered the chemistry of Earth's air, water, and soil. This course explores these changes with an emphasis on the analytical techniques used to measure the human impact. Topics include the accumulation of greenhouse gases (CO2 and CH4) in Earth's atmosphere and the contamination of drinking water at the tap and in the ground. Students will get hands on training in mass spectrometry and spectroscopy to determine the chemical composition of air, water, and soil and will participate in an outreach project aimed at providing chemical analyses of urban tap waters to residents of Trenton, NJ.
Humans have profoundly altered the chemistry of Earth's air, water, and soil. This course explores these changes with an emphasis on the analytical techniques used to measure the human impact. Topics include the accumulation of greenhouse gases (CO2 and CH4) in Earth's atmosphere and the contamination of drinking water at the tap and in the ground. Students will get hands on training in mass spectrometry and spectroscopy to determine the chemical composition of air, water, and soil and will participate in an outreach project aimed at providing chemical analyses of urban tap waters to residents of Trenton, NJ.
Humans have profoundly altered the chemistry of Earth's air, water, and soil. This course explores these changes with an emphasis on the analytical techniques used to measure the human impact. Topics include the accumulation of greenhouse gases (CO2 and CH4) in Earth's atmosphere and the contamination of drinking water at the tap and in the ground. Students will get hands on training in mass spectrometry and spectroscopy to determine the chemical composition of air, water, and soil and will participate in an outreach project aimed at providing chemical analyses of urban tap waters to residents of Trenton, NJ.
This course seeks to understand the 'how' of Earth history by integrating many branches of Earth system science including geochronology, paleomagnetism, tectonics, petrology, paleoclimate, sedimentology, geochemistry, and geobiology. Through a detailed study of the relevant datasets, models, and theories, students in this course will engage and struggle with these seemingly disparate fields to arrive at a better understanding of how an imperfect geologic record can be used to produce an accurate representation of our planet's history.
Graduate Studies
Course educates Geosciences and AOS students in the responsible conduct of research using case studies appropriate to these disciplines. This discussion-based course focuses on issues related to the use of scientific data, publication practices and responsible authorship, peer review, research misconduct, conflicts of interest, the role of mentors & mentees, issues encountered in collaborative research and the role of scientists in society. Successful completion is based on attendance, reading, and active participation in class discussions. Course satisfies University requirement for RCR training.
Course educates Geosciences and AOS students in the responsible conduct of research using case studies appropriate to these disciplines. This discussion-based course focuses on issues related to the use of scientific data, publication practices and responsible authorship, peer review, research misconduct, conflicts of interest, the role of mentors & mentees, issues encountered in collaborative research and the role of scientists in society. Successful completion is based on attendance, reading, and active participation in class discussions. Course satisfies University requirement for RCR training.
A yearlong survey, in sequence, of fundamental papers in the geosciences. Topics in 505 (Spring) include the origin and interior of the Earth, plate tectonics, geodynamics, the history of life on Earth, the composition of the Earth, its oceans and atmospheres, past climate. Topics in 506 (Fall) include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, rock fracture and seismicity. A core course for all beginning graduate students in the geosciences.
A yearlong survey, in sequence, of fundamental papers in the geosciences. Topics in 505 (Spring) include the origin and interior of the Earth, plate tectonics, geodynamics, the history of life on Earth, the composition of the Earth, its oceans and atmospheres, past climate. Topics in 506 (Fall) include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, rock fracture and seismicity. A core course for all beginning graduate students in the geosciences.
A survey of fundamental papers in the Geosciences. Topics include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, Earth structure and mechanics, and seismicity. This is the core geosciences graduate course.